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Abstract

Small angle light scattering (SALS) is one of the tools that can be used to study a phase separation. It is shown that SALS can be used to

discriminate between nucleation and growth (NG) and spinodal decomposition (SD) even when both give a pattern composed of a ring. To

support this, a complete calculation of the light scattering of an NG process is performed, taken into account the correct Mie form factor and

adding polydispersity, multiple scattering and non-independent scattering. All these factors are shown to play a role that gives patterns that

cannot be confused with the one originating from an SD. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The separation of a homogeneous mixture into two

phases can proceed through two main ways, spinodal

decomposition (SD) and nucleation and growth (NG)

[1±3]. The selection of the mechanism will depend on the

thermodynamic balance between the two components and is

mainly driven by the quench depth and the composition.

These two processes are different and produce very different

morphologies. SD gives a 3D space interconnected region of

phase A-rich and phase B-rich areas. It takes place if the

mixture is quenched into an unstable zone of the phase

diagram. The growth originates from a small and periodic

¯uctuation of composition. The behaviour of the mean

distance between the regions and the increase in concentra-

tion of the major component in their respected phases are

well documented [4,5]. In some cases the high surface

energy represented by the co-continuous structure will

induce a structure break-up with or without coalescence.

Coming from an SD, the resulting droplets will be regularly

dispersed and the particle size will be quite uniform.

On the other hand, NG produces a very different morphol-

ogy [6±8]. It starts with the random building of nuclei with a

size above a critical one. Most of the time, these nuclei will

grow with the same growth rate in all directions (in isotropic

¯uids). The morphology is thus composed of spheres of

phase A-rich regions in a phase B-rich continuous matrix.

In the early stages of the NG process, it is easy to obtain a

rate equation for the radius of the sphere by solving the

diffusion equation [2]:

dR

dt
� D

R
D 2

a

R

� �
�1�

(this means R / t1=2 if a is small). D is the diffusion coef®-

cient, D the relative supersaturation and a the interface

thickness.

In the late stages of growth, Li®shitz and Slyozov [9]

calculated the behaviour of the droplet radius distribution

function and showed that the mean radius of the spheres

obeys the following law:

�R / t1=3 �2�
In the late stage (coarsening process), larger droplets grow

at the expense of smaller droplets. This results from an

evaporation±condensation mechanism in which the atoms

of the minority phase diffuse to the matrix from smaller

droplets that are dissolving to larger droplets that are grow-

ing. This behaviour is also called Ostwald ripening.

In both cases, since the system will be transformed from a

homogeneous mixture with a single refractive index to a

mixture with two distinct phases (thus with two different

refractive indexes), small angle light scattering (SALS) is

the obvious, most simple tool to study such phase separa-

tions in the type of systems under consideration here

[10±15]. SALS is determined by two factors: one resulting
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from the scattering of the phase separating units, called the

form factor, denoted P, and the other resulting from the

spatial correlation of the units called the structure factor

and denoted S. In most practical cases, P and S can be

explicitly calculated and the scattering intensity can be

deduced. If, knowing the nature of the scattering units and

their spatial positions, it is possible to predict the small

angle scattering pattern, then the contrary is not possible

ab initio. This opens the way to an important matter of

debate, whether it is possible to predict the type of phase

separation (SD or NG) from the scattering pattern. It is clear

that knowing which mechanism is active in a phase separa-

tion is of fundamental importance in order to understand the

thermodynamics of the process and also in order to tailor the

®nal morphology of materials.

One area where such an approach is important is the

polymerisation induced phase separation (PIPS). It is a tech-

nique commonly used for preparing polymer composites

[16±18]. At the beginning of the process, the mixture is

homogeneous. The increase of the average molar mass of

a polymerising component will induce the phase separation

mainly by changing the mixing entropy. The ®nal structure

is controlled by the competition between the phase separa-

tion and the increase of the viscosity of the matrix. At a

certain point, the matrix vitri®es and the structure is nearly

frozen.

Light scattering has been widely used to study PIPS

[19±27] with two opposing interpretations of the light scat-

tering patterns. In most cases, the light scattering patterns

are in the form of a scattering ring, which changes its inten-

sity and angular position as the phase separation advances.

Fig. 1 gives a typical example of such a ring pattern, taken

during the curing of a thermoset/thermoplastic mixture.

Depending on the system and experimental conditions, the

ring is more or less pronounced and its angular position

depends on the spatial extent of the phase separation. All

controversy is in the scattering arrangement that can

produce such a ring. Several papers ascribe such a ring

unambiguously to an SD process [4,23±26]. It is known

and well understood that an SD process will give a ring.

The way in which this ring changes its intensity and angular

position proceeds in three phases [27]. In the early stage,

periodic concentration ¯uctuations with wavelength L are

built up throughout the whole sample. The amplitude of the

¯uctuations increases with time while L is nearly constant.

A scattered ring appears. In the intermediate stage, the

concentration ¯uctuations grow. Hence, the amplitude and

the wavelength of the ¯uctuations grow. The ring brightens

and collapses. When the equilibrium concentrations in each

phase are reached, the system enters the ®nal stage. In this

period, the domains grow in size in a self-similar way and

their boundaries are sharpened.

Recently, a group showed that a ring similar to that observed

in PIPS can also be explained by an NG process [28]. Their

analysis is based on two different approaches. The ®rst

approach considers the growth of spatially distant spheres

(i.e. the structure factor is ignored) that are surrounded by a

depleted zone. In agreement with previous similar results

[29,30], this analysis shows that a ring can be produced. The

way in which the intensity and position of the ring change

depends on the complex coupling between the phase separa-

tion rate, the polymerisation rate and the change in diffusion

coef®cient of the A and B species as a function of A and B

concentrations. The second approach [31] considers the case

of growing spheres that will come closer and closer. In that

case, both the form factor and the structure factor have to be

taken into account. Using a detailed analysis of the PIPS ther-

modynamics, the authors show that a quench into the meta-

stable region may produce an NG phase separation that will

give a scattering ring similar to the one classically observed in

PIPS and previously ascribed to an SD mechanism. Their

analysis is based on the coupling of a form factor and a struc-

ture factor since the spheres will be close to each other. This

very classical approach uses the most simple structure factor

(that will be also used in this paper and described in detail later)

that produces a coherence peak at a given scattering angle in all

directions, thus giving rise to a ring. The peak coming from the

structure factor increases as the spatial coherence increases, as

it occurs when the phase separation advances. A careful look at

this paper shows that the authors consider a very special case.

The size (or the mean size when considering the polydisper-

sity) is changing by a very minor amount between the begin-

ning of the phase separation and a conversion (or a time) where

the size is ®xed, while the concentration of spheres continues

to increase. This has two consequences. The ®rst concerns the

light scattering pattern that is nearly completely controlled by

the structure factor known to produce a ring. The second is that

in the monodisperse case (spheres with all the same size),
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Fig. 1. Light scattering pattern from a PIPS in a thermoset/thermoplastic

blend. The mixture is composed of an epoxy resin (DGEBA), a linking

agent (MCDEA) and a thermoplastic (PEI, 5% in weight). The system is

cured at 808C.



®xing the size and increasing the concentration imply an

instantaneous, impossible, growth of spheres of a ®xed size.

Recognising the importance of being able to know by

SALS which mechanism (SD or NG) causes a phase

separation, it is necessary to investigate this matter more

thoroughly. The aim of this paper is to show that NG and

SD cannot be confused, even if in some cases, both can

lead to a light scattering pattern in the form of a ring. To do

this, the SALS corresponding to the growth of isotropic

spheres during a phase separation process, will be

modelled using a complete light scattering theory (Mie)

and taking into account spatial coherence and multiple

scattering. When a ring appears, its behaviour as a function

of time will be analysed and compared to that known to

occur for an SD process, in order to see if both can be

confused.

2. Phase separation model

Phase separation can take two different morphological

and thermodynamical routes, NG and SD. Since the light

scattering by SD is known to give a scattering halo that is

well documented, we will focus in this paper on the NG

process, which can give several different types of SALS

patterns, depending on the size and concentration of the

growing nuclei.

The NG mechanism is one of the processes throughout

which a polymer blend, initially homogeneous, may enter

phase separation. This mechanism takes place in the meta-

stable region of the phase diagram of the system. Small

nuclei are formed by random variations in concentration.

A nucleus will grow only if its radius is larger than the

critical radius. Nuclei smaller than the critical size will

disappear because the decrease in free energy does not

compensate for the excess in surface energy. In general,

the composition of the nucleus is ®xed by thermodynamics

and is constant during the growth process. For the PIPS, the

composition of the nucleus is varying with time since the

conversion is increasing. The resulting morphology is a two-

phase system with a droplet structure. This means that poly-

disperse spheres are randomly dispersed in the matrix. In

NG, the average size of the nuclei and droplets are deter-

mined by kinetics, but the amplitude of the ¯uctuations, i.e.

the concentration difference between the two phases is

determined by the thermodynamic conditions of the

mixture. In general, during the NG process, nuclei are

born at random time (heterogeneous NG) or simultaneously

(homogeneous NG) and grow from then on. In our calcula-

tions, the NG process is either homogeneous (the spheres

are created at the same time and they grow in the same way)

or heterogeneous (the spheres are created at various time,

and the resulting morphology is a distribution of spheres

with various sizes).

The growth can be described as the evolution of size as a

function of time. Most models and experiments follows a

law as [32±34]:

R�t� � R0tm �3�
where R is a size of the sphere (radius), R0 the initial size and

m an exponent usually in the range of 0.3±0.6. The value of

the exponent changes the evolution of the scattering pattern

with absolute time. As seen later, this may be important

when comparing the SD and the NG processes.

During the phase separation, the two phases change their

composition. To simplify calculation, since this paper does

not refer to a given phase diagram, we will keep the refrac-

tive index of the growing sphere constant since its composi-

tion does not change much. This approximation changes

slightly the variation of the intensity of the scattering

light. Doing this, we have to vary the refractive index of

the medium.

Consider a mixture of components A and B with concen-

trations f and (1 2 f ), respectively, and refractive indexes

nA and nB. The refractive index in the mixture is taken as

nmix � nAf 1 nB�1 2 f�: f can be calculated using the

initial concentration of A in the mixture fA (without any

phase separation having taken place), the concentration of A

in the sphere fa , the total volume of spheres Va and the

total sample volume Vtot as:

f � fAVtot 2 faVa

Vtot 2 Va
�4�

Having set these parameters, we have a general model that is

valid for the phase separation of systems with no additional

chemical reaction and a good approximation of the case of

PIPS. Implementation of the parameters size evolution as a

function of time, volume fraction of the spheres and compo-

sition of the two phases of a real PIPS poses only, in prac-

tice, the problem of measurement and calculation.

3. Light scattering approach

As has been mentioned, the scattered intensity, Is is the

result of the contribution of the form (P) and of the structure

(S) factors:

Is / PSI0; with I0, the incident intensity. In what

follows, the form and the structure factor will be expressed

explicitly.

3.1. Mie scattering of an isolated sphere

Using electromagnetic theory (Maxwell's equations and

proper boundary conditions) Gustav Mie obtained in 1908

an exact solution for the scattering of a plane monochro-

matic wave by an isotropic sphere embedded in an isotropic

medium [35]. Although this formal solution has been around

for many years, it has been a practical means for detailed

computations only since the advent of computers.

In order to calculate the intensity scattered by a homo-

geneous sphere in a homogeneous medium, Mie proposes to

link the components of an incident electromagnetic plane

J. Maugey et al. / Polymer 42 (2001) 4353±4366 4355



wave with its scattered ones via a transfer matrix. Only the

resulting formulas of Mie theory for the calculus of the

coef®cients of this matrix are given here. For a detailed

derivation, the reader is referred to literature [36±38].

The amplitude functions can be expressed as:

S1�u� �
X1
n�1

�2n 1 1�
n�n 1 1� �anpn�cos u�1 bntn�cos u��

S2�u� �
X1
n�1

�2n 1 1�
n�n 1 1� �bnpn�cos u�1 antn�cos u��

S3�u� � S4�u� � 0

�5�

The functions pn(cos u ) and t n(cos u) can be calculated as:

pn�cos u� � dPn�cos u�
d cos u

tn�cos u� � cos u pn�cos u�2 sin2 u
dpn�cos u�

d cos u

�6�

in which Pn(cos u ) is the Legendre polynomial.

The Mie coef®cient an and bn equal:

an � C 0�mx�Cn�x�2 mCn�mx�C 0n�x�
C 0n�mx�zn�x�2 mCn�mx�z 0�x�

bn � mC 0n�mx�Cn�x�2 Cn�mx�C 0n�x�
mC 0n�mx�zn�x�2 Cn�mx�z 0n�x�

�7�

In this formula:x � �2pa�=l is the dimensionless size para-

meter (a the radius of the sphere, l the wavelength of the

light in the medium). m � n1=n2 where n1 is the refractive

index of the sphere and n2 the refractive index of the

medium.

The Riccati±Bessel functions C n(z) and z n(z) are de®ned

as:

Cn�z� �
�����
pz

2

r
Jn11=2�z�;

J�z� is the Bessel function from the first kind:

zn�z� �
�����
pz

2

r
H�2�

n11=2
�z�;

H�2��z� is the Bessel function from the second kind: (8)

The scattered intensity becomes IVV or IHV whether the

sphere is placed between polariser and analyser parallel or

crossed. In the small wave vector [37], the resulting inten-

sities are:

IVV � uS1 sin2 m 1 S2 cos2 mu2

k2r2
0

p I0 � PVV±Mie p I0

IHV � uS1 2 S2u2 sin2�2m�
4k2r2

0

p I0 � PHV±Mie p I0

�9�

where m is the azimuthal angle on the diffusion pattern,

and I0 the incident intensity. In what follows, only the VV

situation will be considered since the depolarised part is

negligible for an isotropic situation.

3.2. Multiple scattering

In a real situation, multiple scattering is a correction that

has to be made to Mie theory. Actually, one never works

with one sphere but with a cloud of spheres. Each particle in

the sample is not only exposed to the light from the incident

beam but also to the light scattered by the other particles.

Before arriving at a particle, the original beam may also

have suffered extinction by other particles. If these effects

are strong, multiple scattering cannot be neglected. In

general, multiple scattering causes a broadening and ¯atten-

ing of the scattering pro®le.

Theories for multiple scattered light belong to two

classes. The ®rst class involves a radiative transfer

approach. The second class is based on the determination

of the successive angular intensity distributions of each

order of scattering. We will treat only the second class

here. A general theory due to Hartel [39] and extended by

Woodward [40] is presented. The general idea of this

method is to take into account that light scattered by one

particle can meet other particles before leaving the sample.

Hartel's idea is to consider that the moment the light scat-

tered by one particle meets another particle, it is scattered

again according to the single scattering distribution. In this

way, double scattering represents the single scattering of the

ªsingle scatteredº light. In order to formulate this theory, a

speci®c formalism is used. The theory presented here is only

valid at an azimuthal angle of 458. In literature, a theory has

been proposed to take into account the azimuthal depen-

dence, too, and to build a multiple scattering version of

any other scattering theory, that of Mie or an approximation

[41].

In practice, the sample is divided into successive imaginary

parallel layers of the same thickness, delta z. As the incident

intensity travels along a layer, a portion of its energy, Qk(z),

is distributed over the scattering angle u according to the

single scattering distribution of Mie, fk(u ); k is the order of

scattering. As has been mentioned before, it is not our

purpose here to detail the complicated expressions of the

light quantities and of the angular distribution functions. All

these equations can be found in literature [39±42].

The total angular distribution for the scattered light at z is

obtained by summation over all light scattering orders and

is:

Itot �
X1
k�1

Qk�z�fk�u� with Qk�z� � �t z�k
k!

e2t z
;

t being the turbidity of the sample and

fk�u� � 1

4p
1 1

X1
n�1

ck
n

�2n 1 1�k21
Pn�cos u�

" #
�10�
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Pn(cos u) are Legendre polynomials. Another formulation

of Mie theory is used here. Chu and Churchill [42] derived

expressions to calculate the coef®cients cn (related with the

an and bn coef®cients of the Mie theory).

3.3. Non-independent scattering of spheres

Up till now, we have considered that waves scattered by

different particles from the same incident beam in the same

direction may not interfere. Independent scattering means

that there is no systematic relation between the phases of

these waves. This condition is only met in dilute systems,

in which there is a random distribution of the scatterers. In

more concentrated systems, intensities cannot simply be

added. Intensity must take into account S(q), the structure

factor, which accounts for the interparticle interference.

S(q) will be equal to 1 at all q for low concentrations.

For monodisperse particles, S(q) is given by [43,44]:

S�q� � 1 1 4pN
Z1

0
�g�r�2 1� sin�qr�

qr
r2 dr �11�

where q � ��4p�=l� sin�u=2� is the wave vector, l the wave-

length of the electromagnetic wave in the medium, N the

particle number density and g(r) the radial distribution func-

tion describing the arrangement of the particles.

In liquid, one mostly uses the total correlation function,

de®ned as:

h�r12� � g�r12�2 1 �12�
which measures the deviation of the pair distribution func-

tion from its background value due to the in¯uence of parti-

cle 1 on particle 2 at a distance r12. A successful approach is

to consider h(r12) as consisting of a direct correlation

between particles 1 and 2 and an indirect term by which

the correlation is transferred to all neighbouring particles.

This is expressed mathematically as:

h�r12� � c�r12�1 N
Z

c�r13�h�r32� dr3 �13�

An often-used approximation for the direct correlation func-

tion is the Percus±Yevick [45] expression, valid for mono-

disperse hard spheres in a liquid:

c�r� � �e2f�r�=kT 2 1� ef�r�=kT g�r� �14�

with f�r� � 1 for 0 , r , 2R and f�r� � 0 for r . 2R

R is the radius of the spheres. Because c(r) is a correlation

between particles 1 and 2, it falls off quickly to zero with

separation distance.

Solving these equations ®nally results in [43,46]:

S�q� � 1

1 1 24hG�A�=A �15�

where A � 2qR; h � �4pR3N�=3 is the hard sphere volume

fraction, and

G�A� � a

A2
�sin A 2 A cos A�1

b

A3
�2A sin A

1 �2 2 A2� cos A 2 2�1
g

A5
�22A4 cos A

1 4��3A2 2 6� cos A 1 �A3 2 6A� sin A 1 6�� �16�
where

a � �1 1 2h�2
�1 2 h�4

b � 26h�1 1 h=2�2
�1 2 h�4

g � 1=2h�1 1 2h�2
�1 2 h�4

3.4. Scattering during a spinodal decomposition

The scattering during an SD process is well known. The

early stages of SD can be described by the Cahn±Hilliard

linearised theory [2,47]. Starting from a diffusion equation,

this theory gives an expression of the structure factor. The

evolution of the structure factor with time is characterised

by an exponential growth with a ®xed maximum located

around qm, the wavevector referring to the dominant mode

of ¯uctuation concentration.

Langer, Bar-on and Miller gave a more general expres-

sion of the evolution of the structure factor, taking into

account the non-linearities contained in the diffusion equa-

tion [48]. The model predicts, in the intermediate stages of

the SD, an evolution of the scattered peak to the small

wavevectors. This evolution corresponds to the growth of

the domains. As the concentration ¯uctuations grow, the

amplitude of the ¯uctuations grows. At the moment

the equilibrium concentrations in each phase are reached,

the system enters the ®nal stage.

In the ®nal stage of SD, the self-similar growth of the

morphology [5] is observed. It is thus useful to de®ne a

scaled structure factor F�x; t� in the following way [49]:

F�x; t� � I�q; t�qd
m�t� �17�

where x � q=qm�t� and d � 3 for a 3D system. In the ®nal

stages of the SD, F�x; t� is assumed to be independent of

time. Binder and Stauffer propose also scaling rules to

describe the scattered intensity [49,50]:

qm�t� / t2a Im�t� / tb �18�
where Im is the scattered intensity at qm. The theory predicts

the b � 3a relation between the scaling exponents.

However, sometimes, these power laws concerning the

evolution of the maximum intensity Imax and its associated

J. Maugey et al. / Polymer 42 (2001) 4353±4366 4357



wave vector qm during the ®nal stages of SD are not

considered. In fact these scaling laws work in the case

when the phase separation does not imply any chemical

reaction, like the polymerisation of one of the components

of the blend where the increase in the viscosity of the

blend can restrict the evolution of the morphology. The

evolution of the structure factor during SD is summarised

in Fig. 2.
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Fig. 2. Schematic drawing of the evolution of the scattering peak during spinodal decomposition.
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Fig. 3. (a) NG simulation. Initial radius of the sphere 1 mm, exponent in growth law 0.5, refractive index of components A and B 1.55 and 1.33, respectively,

concentration of A in the sphere 0.95 and 0.3 in the homogeneous mixture. With time, the radius of the spheres is increasing. Radius of the spheres, in
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4. Results and discussion

4.1. Computation parameters

In the following, we present simulations of light

scattering pro®les that should be encountered during NG.

Different situations will be considered, starting from the

case of an isolated sphere and an assembly of polydisperse

spheres. Then more realistic experiments will be examined

taking into account the in¯uence of multiple scattering and

of the structure factor for a dense population of spheres. The

purpose is to show how the scattering patterns evolve as the

phase separation proceeds, under which conditions they can

exhibit a non-zero-angle peak and how this peak behaves.

The choice of the simulation parameters is described below.

For the sake of comparison of all the different conditions,

the nuclei will have an initial radius of 1 mm in all simula-

tions. The choice of the growth rate is important because it

in¯uences the time evolution of the scattering patterns and

thus the evolution in the positions of the peaks. As for most

real situations, the exponent of the growth law is taken to be

equal to 0.5 [32].

4.2. Growth of an isolated sphere (Mie theory only)

Fig. 3a and b shows the scattering intensity due to the

growth of a single sphere during a phase separation process.

The refractive indexes of components A and B are 1.55 and

1.33, respectively. The refractive index of the sphere is 1.55

and the concentration of A in the mixture was 0.3 before

phase separation. The refractive index of the medium is 1.39

at the beginning of the simulation and decreases with time.

The ®gures show the typical behaviour that we expect

from Mie curves: a maximum intensity in the centre of

the pattern, decreasing as the angle increases but with

some secondary maxima. Let us see if this secondary maxi-

mum could be confused with what occurs during an SD. The

evolution of the position and intensity of the second maxi-

mum is not monotonic. In general, the second maximum

goes to smaller angles with increasing time. However,

sometimes, the second maximum jumps instantaneously to

a larger angle. In fact, as the second maximum evolves

towards the centre of the image, it will come closer and

closer to the powerful ®rst maximum intensity peak at

zero-angle. At a certain moment the second maximum

will disappear in this central peak. It appears as if the second

maximum is swallowed by the ®rst peak (Fig. 3b for a

sphere with a radius of 2.65 mm). The new apparent second

maximum is then displaced to wider angles. The third maxi-

mum in P(q) becomes the second one, and so on. This

phenomenon has to be taken into account during an analysis

of a scattering pattern in order not to make mistakes in the

positions of the peaks. Anyway, even if the zero-angle peak

is not taken into account, the ªapparentlyº random evolution

of the position of the second maximum cannot be mistaken

with the continuous evolution of the peak generated by an

SD to the small wavevectors.

4.3. Growth of polydisperse spheres

In general, if no special care is taken to disperse in the

material a nucleation agent (this is very common for crys-

tallisation, but not really for PIPS), the nucleation will be

heterogeneous with a polydispersed resulting morphology.

The in¯uence of the polydispersity on the scattering

patterns was also studied. The particles are not supposed

to have the same size. The program supposes the radius

distribution to be gaussian. An average intensity pro®le is
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then extracted from each Mie curve corresponding to

the different couples (number of spheres, radius) on the

gaussian distribution.

No particular behaviour of the second-order maximum

is observed. Here again, the scattering patterns are very

different from those observed in the case of an SD. Fig.

4 compares results for different levels of polydispersity

when the mean radius of the spheres of the previous simu-

lation reaches 3.3 mm. As expected, increasing polydisper-

sity causes the second maximum to be less pronounced and

®nally to disappear. The second maximum is observable up

to 16% polydispersity. Up to 8% the third maximum is

observable, but higher-order maxima disappear very

quickly and cannot be distinguished for a polydispersity

greater than 4%. So, even a relatively small polydispersity

smears out secondary scattering peaks, rendering a poten-

tial confusion with SD impossible.

4.4. Growth of spheres with multiple scattering

Multiple scattering is sometimes inevitable, especially

when the size of the growing spheres is much smaller than

the size of the container. Fig. 5a shows the effect of multiple

scattering for spheres with radius 2.5 mm, refractive index

1.50 for the sphere and 1.45 for the medium. The sample

contains 10% (vol.) of spheres and we vary the thickness of
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the sample to account for multiple scattering. The curves are

normalised. If the sample thickness increases, multiple scat-

tering becomes more important. At ®rst, the main effect is

the disappearance of all the second-order peaks predicted by

Mie theory (details in Fig. 5b). If the thickness increases

further, the ¯attening effect continues. Besides this effect,

there is a second consequence of multiple scattering, which

concerns the global intensity. Fig. 5c contains the same

pro®les as the previous ®gure but the intensities are no

longer normalised. In increasing the sample thickness in

an SALS experiment, at ®rst scattered intensity will increase

because there are more scatterers (thickness from 5 to
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30 mm in this example). If the thickness increases further,

the observed intensity at small angles will decline because a

large part of the intensity is scattered at large angles due to

multiple scattering (thickness .30 mm in the example).

From these results it is now possible to know how thin the

sample should be or how low the concentration should be in

the sample to avoid large multiple scattering effects. The

general effect of multiple scattering is to depress secondary

maxima and is adverse to a potential confusion with SD.

4.5. Simulations based on non-independent scattering

We have shown so far that the scattering of monodis-

persed, polydispersed, with or without multiple scattering

cannot produce a ring with no intensity at zero scattering

angle, but can produce secondary maxima that are more

pronounced for monodispersed spheres with no multiple

scattering. Nevertheless, we have shown that the evolution

of these secondary maxima is not monotonic with time as

the phase separation progresses because of the complex

in¯uence of the changes of sizes and relative refractive

indexes on the Mie theory. There is thus no possibility to

confuse these peaks with what is happening in an SD. We

will turn now to a more potential actor in a possible confu-

sion between NG and SD, i.e. when the spheres start to be so

close that independent scattering is no longer valid. In that

case, we have to add to the individual scattering a structure

factor such as the one given in the theory part and illustrated

in Fig. 6a. For this simulation, the refractive index of the A

and B components are 1.6 and 1.5, respectively, and the

concentration of component A is taken to be equal to 0.7

before phase separation. Fig. 6a shows the well-known

result of a series of peaks positioned at ®nite scattering

angles. With the increase of the phase separation in time

(evolution of the refractive indexes, of the size of the

spheres and of sphere volume fraction), the peaks grow in

intensity and move in position (see Fig. 6b for the details).

Let us now couple this structure factor to the Mie form

factor of the spheres, as given before, by multiplying the

two terms (a procedure valid only for spherical particles).

An example of this is given in Fig. 7. At low conversion, the

scattering is not affected by the interparticle interactions.

For this example, there is no in¯uence of interparticle inter-

actions below a concentration of 10%. Above 10%, the

effect of the interparticle interactions is mainly to decrease

the scattering at low angles and to smear it out at large

angles. The created peak seems to have no particular evolu-

tion, either in intensity or in position, and thus cannot be

mistaken with the peak occurring during an SD. This beha-

viour is mainly due to the evolution of the width of the

central peak superimposed with the maximum of the struc-

ture factor. The higher-order peaks are a combination of the

orders peaks of the structure factor and of the orders moving

peaks due to the single scattering of the spheres. Moreover,

it can be shown that the appearance and the evolution of this

peak strongly depends on the material parameters (refrac-

tive indexes, initial composition of the blend).

4.6. Growth simulation including non-independent and

multiple scattering

We present here a complete simulation of growth of

spheres (see Fig. 8). It takes into account the in¯uence of

multiple scattering and of the structure factor. In order to

demonstrate the effect of the above corrections on a realistic

case, the refractive indexes of A and B components are

taken to be equal to 1.6 and 1.5, respectively. These values

correspond to some current ones for polymer blends. The

initial mixture contains 70% of component A and 30% of

component B. The initial refractive index of the medium is
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Fig. 9. Evolution of the maximum of intensity and of its associated wavevector, for the case of Fig. 8. (±K±) Im; (±A±) qm:



1.57. The thickness of the sample is taken to be equal to

30 mm.

At ®rst, the traditional zero-angle peak predicted by the

Mie theory increases till the time the spheres reach a radius

of 3.31 mm. This time corresponds to a sphere volume frac-

tion of 9.1%. In a second time, owing to the in¯uence of

multiple scattering, this intensity decreases and a peak

appears at a non-zero angle. Then, the in¯uence of the struc-

ture factor leads to a narrow peak (sphere volume fraction of

27.7% and sphere radius of 4.8 mm). Let us now look at the

evolution of the maximum of intensity and its associated

wavevector from its appearance (see Fig. 7b). The curves

of Fig. 9 doubtless cannot be assigned to an SD process

where the wavevector corresponding to the maximum of

intensity continuously evolves to the small values.

5. Conclusions

Theoretical predictions of light scattering patterns asso-

ciated with the nucleation and growth (NG) phase separa-

tion mechanism were presented. Non-independent and

multiple scattering, which can play a role in practical situa-

tions, were taken into account. A continuous evolution in

the position of the scattering peaks has been shown. More-

over, as in the case of a spinodal decomposition (SD), it is

possible to obtain a peak at a non-zero angle. However, an

important statement has to be made. In the spinodal case,

this peak ®rst appears at a ®nite angle before evolving to the

small angles, whereas in the NG case, a zero-angle peak is

already present at the beginning of the process. Then, the

intensity of this peak decreases, and a peak, mainly resulting

from the structure factor of the spheres, appears. This

comparison of the evolution of the scattering patterns

constitutes the way to discriminate between the two

phase-separation processes. There should not be any possi-

ble confusion between SD and NG processes, and small

angle light scattering should be able to tell which process

is active.
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